EPFL

Week 6: Applying strain and stress in multiple dimensions

- 1. Properties of materials
- Limiting behavior
- 3. Torsion

Properties of materials

Stiffness: the property that enables a material to withstand high stress without great strain. It results in a steep first part of the stress strain curve. The stiffness is a function of the elastic modulus

<u>Strength:</u> determines the greatest stress that a material can withstand before failure. It depends on the material and the situation if failure refers to the yield point or the fracture point.

Elasticity: enables a material to regain its original dimensions after a deforming load is removed

Brittleness: the absence of any plastic deformation before abrupt failure

Properties of materials

<u>Ductility:</u> describes the amount of <u>plastic</u> deformation that a material can undergo in <u>tension</u> before rupture

<u>Malleability:</u> describes the amount of <u>plastic</u> deformation that a material can undergo in <u>compression</u> before rupture

<u>Toughness:</u> the amount of energy that is required to crack a material. It enables a material to withstand high impact loads. In such loads, some of the impact energy is transferred and absorbed by the body.

<u>Resilience:</u> the ability of a material to endure high impact loads without inducing a stress above the elastic limit. In resilient materials, the energy of the impact is stored in the body and recovered when the body is unloaded.

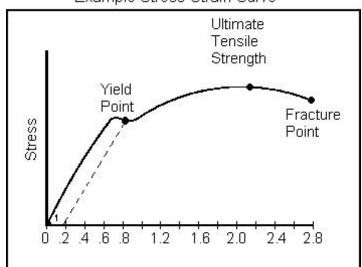
Limiting behavior - What is failure?

The stress or strain at which a structure fails depends very much on the application!

- Failure is generally defined as no longer fulfilling the desired function.
- Deviation from the desired function of a structure is defined with respect to failure criteria:
 - what is the maximum allowable strain for a given load?
 - what is the maximum allowable stress?
 - ...
- Here we are concerned with the materials aspect of the failure

EPFL

Example Stress-Strain Curve



The stress/strain curve

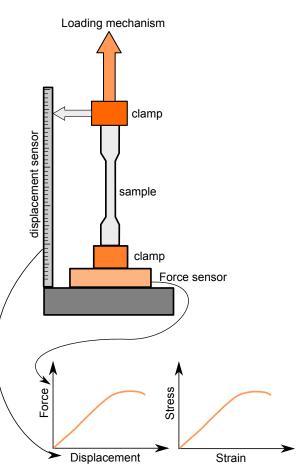
- Hooke's law only describes the early region of the stress/strain curve
- Beyond the yield point much less stress is required to obtain a large strain
- fracture point ≠ yield point
- "failure point" is a matter of definition for different applications
- Stress strain curves are recorded through experimental mechanical testing

EPFL

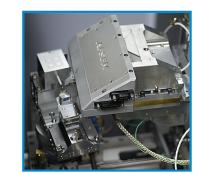
Stress strain curves are determined through mechanical testing

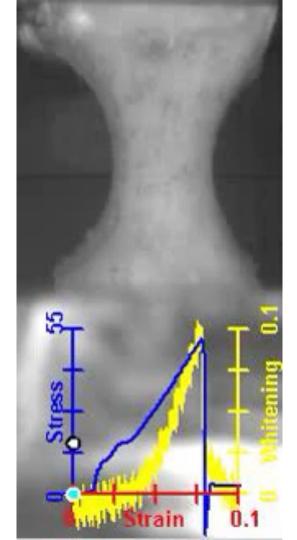
General purpose tensile and compression tester

In vivo testing



Nanomechanical testing

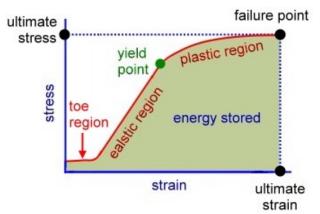




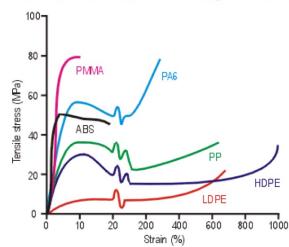
Tensile test of demineralized bone

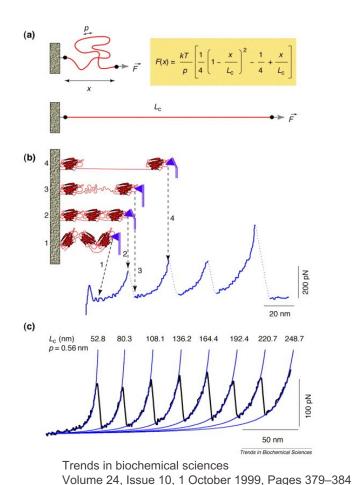
Stress-strain tests are often accompanied by some form of imaging method to observe local and global deformations.

Complex stress/strain curves



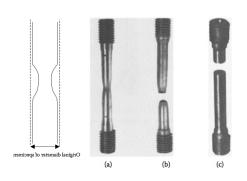
Stress-Strain Curve of Collagen Fiber

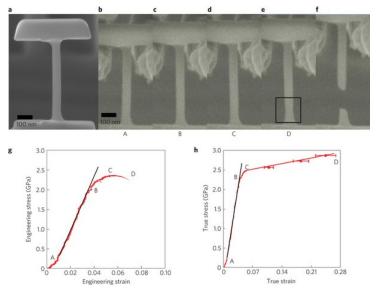




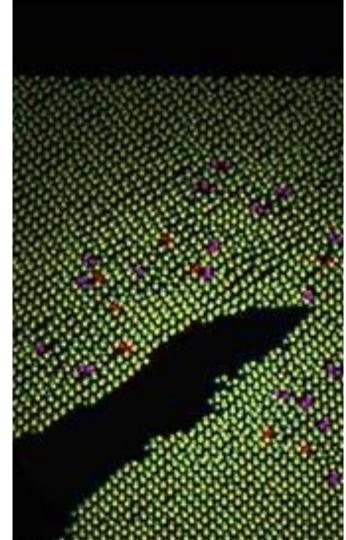
Macroscopic manifestations of stress/strain curve

 "Necking": before failure of ductile materials, they exhibit necking, which is a result of the Poisson effect in combination with stress concentration effect





Jang et al. Nature Materials **9, 215–219 (2010)**Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses



Atomic origin of fracture strength

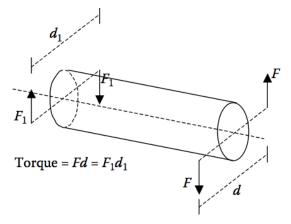
- The fracture strength of a brittle elastic material ideally depends on the intermolecular bond strength between the molecules
- From theory: the fracture strength should be 1/10 of the elastic modulus E
- In reality: the fracture strength is 1/100 to 1/10.000 of E
- The fracture strength is strongly determined by flaws in the material (crystal dislocations, microcracks, impurities) that lead to <u>stress concentration</u>

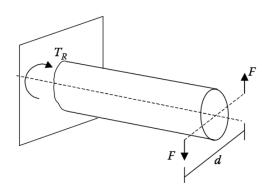
Limiting behavior

- Real world loading conditions are different than the loading conditions in which the materials values are measured in the laboratory
- We need reliable criteria that predict when a structure fails and when not.
- Different geometries and materials require different failure criteria
- Maximum normal stress criterion: failure is predicted when the maximum of the 3 normal (principal) stresses reaches the materials ultimate tensile or compressive strength
- Safety factor: describes the structural capacity of a system beyond the expected loads $\frac{\text{failure or yield stress}}{\text{maximum allowable or expected stress}}$
- For a robust design, the safety factor should be > 2

Applying strain and stress in multiple dimensions

- Torsion
- 2. Strain in torsion of a round bar
- 3. Stress in torsion of a round bar
- Stress in a thin walled tube

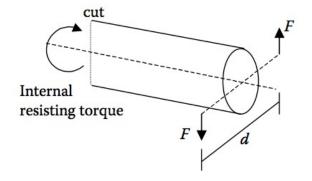




Torsion

When a structure is loaded by a pair of *couples* or a single couple and a fixed support we call the structure in torsion.

Couple: a pair of equal and parallel forces that act in opposite direction and tend to produce a rotation



Torsion

The equation of equilibrium in this case is (with x being the axis along the rotation axis of the member in question):

$$\sum M_x = 0$$

Using the methods of sections we see that an internal torque must exist that balances the external torque. This torque must be equal and opposite to the external torque.

EPFL

Torsional shear stress

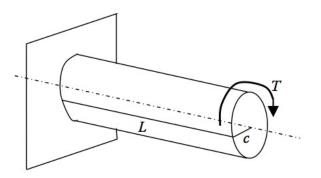
- Torsion causes no direct tension or compression in the material: it creates pure shear stresses on each crossectional plane
- If we apply the method of sections to an object to "cut it into slices", and apply a torque, then the internal resistance that keeps the stack of slices from rotating is the torsional shear stress.
- The result of the torsional shear stress on any (internal) crossectional plane is an internal resisting torque.

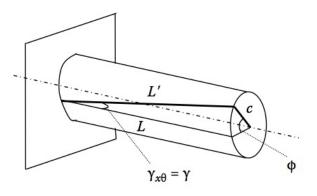
Seorg Fantner

Useful statements about torsion

 $au = G \cdot \gamma$

- A plane section perpendicular to the body/torsion axis remains plane after torque is applied
- The shear strainγ(r) varies linearly from 0 at r=0 to γ_{max} on the outer edge
- For a linearly elastic material we can apply Hooke's law, where τ is the shear stress, γ is the shear stain and G the modulus of rigidity:





Torsional shear strain Relating torsion angle to torsional shear strain

Before we can derive a formula for the shear strain, we first have to define the geometric shear strain. We do this for a solid cylinder fixed at one end.

The shear strain on the outside of the cylinder is then the change of the (initially right) angle between the line L and the vertical.

$$\gamma_{max} = rac{\phi c}{L} \quad \gamma(r) = rac{\phi r}{L}$$

Φ and γ are in radians

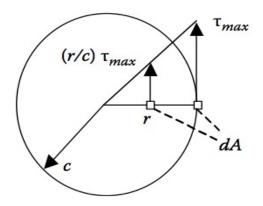
Relating torsional <u>shear strain</u> to torsional <u>shear stress</u>

- We have assumed:
 - γ varies linearly with r
 - · A straight line on a plane that is parallel to the front plane will remain a straight line

$$\gamma(r) = \frac{r}{c} \gamma_{max}$$

• We can therefore write with Hooke's law:

$$\tau(r) = G\frac{r}{c}\gamma_{max} = \frac{r}{c}\tau_{max}$$



The torsion formula: relating torque to torsional shear stress

- We can visualize the shear stress distribution on the circular cross-section:
- REMEMBER: stress is the internal resistance to applied loads (per unit area)
- Assume an infinitesimally small area dA, the the force acting on this area dA is

$$F_{dA} = \tau(r)dA = \frac{r}{c}\tau_{max}dA$$

The equilibrium condition must be satisfied:

$$\sum M_x = 0 = \sum \vec{r} \times \vec{F}$$

The torsion formula: relating <u>torque</u> to torsional <u>shear stress</u>

• The internal moment has to balance the externally applied torque T:

$$T = \vec{F} \times \vec{r} = Fr \sin \alpha$$

$$= \underbrace{\int_{A} \frac{r}{c} \tau_{max} dA}_{Force} \cdot \underbrace{\sin \alpha}_{moment arm} \cdot \underbrace{\sin \alpha}_{\alpha = 90^{o}}$$

$$= \underbrace{\frac{\tau_{max}}{c} \int_{A} r^{2} dA}_{I}$$

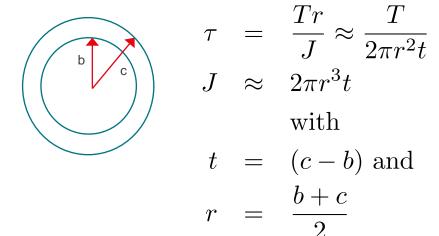
- J is the second moment of inertia (polar moment of inertia)
- The torsion formula is then:

$$\tau_{max} = \frac{Tc}{J}$$

$$\tau(r) = \frac{Tr}{J}$$

The torsion formula for a thin walled tube

• For a thin walled tube, the torsion formula can be approximated by:



Hooke's law for torsion

- From Hooke's law we know:
- From the torsion formula we know:
- From the strain-assumption we know:

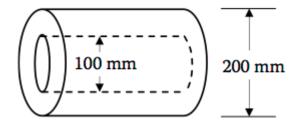
$$\gamma_{max} = \frac{\tau_{max}}{G}$$

$$\tau_{max} = \frac{T\epsilon}{J}$$

$$\gamma_{max} = \frac{c\varsigma}{L}$$

We then get Hooke's law in torsion for a cylindrical bar:

$$\phi = \frac{TL}{GJ}$$



Examples for Torsion: Hollow shaft

A 100-mm-diameter core is bored out from a 200-mm-diameter solid circular shaft (Figure 4.35). What percentage of the shaft's torsional strength is lost due to this operation?

$\phi = \int_0^L \frac{T}{GJ} dl \quad \phi = \sum_i \frac{T_i L_i}{J_i G_i}$

Hooke's law for torsion

This form of Hooke's law can easily be used to measure the rigidity modulus of a material in a torsional test experiment by applying a torque onto the cylindrical test sample and measure the angle of twist. Since L and J are geometrical parameters that can be measure, G can be calculated from the slope of the experimental data.

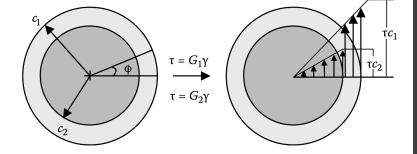
For bars with varying cross-sections or materials properties we can sum up the twist angles as:

EPFL

Normal load vs. Torsion

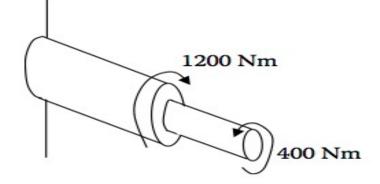
	Spring	Bar in Tension	Bar in Torsion
Geometric property	Δx	δ	ϕ
Materials property	N.A.	E	G
Hoooke's Law	$F = k\Delta x$	$P = \frac{EA}{L}\delta$	$T = \frac{GJ}{L}\phi$
Strain distribution	N.A.	$\tau \neq \tau(r)$	$\tau(r) = \frac{Tr}{J}$

Hooke's law for torsion-Multi material bars



If the bar consists of a core-shell structure, the strain is still linearly increasing.

But because of the change in materials properties, the stress is discontinuous.



Examples for Torsion: composite shaft

Two shafts (G = 28 GPa) A and B are joined and subjected to the torques shown in the figure below. Section A has a solid circular cross section with diameter 40 mm and is 160 mm long; B has a solid circular cross section with diameter 20 mm and is 120 mm long.

Find:

- (a) the maximum shear stress in sections A and B; and
- (b) the angle of twist of the right-most end of *B* relative to the wall.